Abstract

The structure and dynamics of plant populations and communities are largely influenced by seed dispersal. How the wind dispersal trajectory of seeds shifts with differences in seed morphology remains unknown. We used a wind tunnel and video camera to track the dispersal trajectory of seven species of Calligonum whose seeds have different kinds of appendages and other morphological traits, using variable wind speeds and release heights to determine the relationship between seed morphological traits and wind dispersal trajectory. Concave-, straight-line-, horizontal-projectile- and projectile-shaped trajectories were found. Dispersal trajectories such as the horizontal projectile (HP) and projectile (P) tended to have a long dispersal distance. Straight line (SL) and concave curve (CC) trajectories tended to have a short dispersal distance. Seeds with bristles and large mass tended to have SL and CC trajectories, those with wings or balloon and small mass tended to have HP and P trajectories. Wind speed tended to have a stronger influence on the dispersal trajectory of light and low-wing-loading seeds, and release height tended to have a stronger influence on the dispersal trajectory of heavy and high-wing-loading seeds. Thus, seed wind dispersal trajectory is not only determined by seed morphological characteristics but also by environmental factors such as wind speed and release height.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call