Abstract
The East China Sea (ECS) is often obscured from space in the visible and near-visible bands by cloud cover, which prevents remote sensing retrieval of optical properties. However, clouds are transparent to microwaves, and satellites with L-band radiometers have recently been put into orbit to monitor sea surface salinity (SSS). Previous studies have used the mixing of fluvial colored dissolved organic matter (CDOM) near coasts, where the mixing is approximately conservative over short time scales, to estimate SSS. In this study, the usual relationship between CDOM and salinity in the ECS has been used in reverse to estimate CDOM from remotely sensed SSS in the ECS and compare that CDOM with MODIS data. The SSS data used are 7 day composites from NASA’s Aquarius/SAC-D satellite which has an L-band radiometer. The challenges in using this approach are that 1) Aquarius SSS has coarse spatial resolution (150 km), and 2) the ECS has numerous anthropogenic sources of radiofrequency interference which adds noise to the L-band signal for the SSS retrievals. Despite the limits in the method, CDOM distribution in the ECS can be estimated under cloudy conditions. In addition to all-weather retrievals, an additional advantage of the approach is that the algorithm provides an estimate of CDOM absorption that is unaffected by the spectrally similar detritus absorption that can confound optical remote sensing estimates of CDOM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.