Abstract

RGS2 is a member of a family of proteins that negatively modulate G-protein coupled receptor transmission. Variations in the RGS2 gene were found to be associated in humans with anxious and depressive phenotypes. We sought to study the relationship of Rgs2 expression level to depression and anxiety-like behavioural features, sociability and brain 5-HT1A and 5-HT1B receptor expression. We studied male mice carrying a mutation that causes lower Rgs2 gene expression, employing mice heterozygous (Het) or homozygous (Hom) for this mutation, or wild-type (WT). Mice were subjected to behavioural tests reflecting depressive-like behaviour [forced swim test (FST), novelty suppressed feeding test (NSFT)], elevated plus maze (EPM) for evaluation of anxiety levels and the three-chamber sociability test. The possible involvement of raphe nucleus 5-HT1A receptors in these behavioural features was examined by 8-OH-DPAT-induced hypothermia. Expression levels of 5-HT1A and 5-HT1B receptors in the cortex, raphe nucleus and hypothalamus were compared among mice of the different Rgs2 genotype groups. NSFT results demonstrated that Hom mice showed more depressive-like features than Rgs2 Het and WT mice. A trend for such a relationship was also suggested by the FST results. EPM and sociability test results showed Hom and Het mice to be more anxious and less sociable than WT mice. In addition Hom and Het mice were characterized by lower basal body temperature and demonstrated less 8-OH-DPAT-induced hypothermia than WT mice. Finally, Hom and Het mice had significantly lower 5-HT1A and 5-HT1B receptor expression levels in the raphe than WT mice. Our findings demonstrate a relationship between Rgs2 gene expression level and a propensity for anxious and depressive-like behaviour and reduced social interaction that may involve changes in serotonergic receptor expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.