Abstract

EUV photoresists are considered as a potential source of optics contamination, since they introduce irradiation induced outgassing in the EUV vacuum environment. Therefore, before these resists can be used on e.g. ASML NXE:3100 or NXE:3300, they need to be tested in dedicated equipment according to a well-defined procedure, which is based on exposing a witness sample (WS) in the vicinity of a simultaneously exposed resist as it outgasses. Such an outgassing test infrastructure is available at many sites, but exposure modes on the witness sample and wafer can be significantly different, which potentially could lead to different test results. In this investigation, we first explored in more detail the relationship between resist outgassing as measured by RGA (Residual Gas Analysis) and the carbon growth obtained in the WS test. A good correlation was found by using a timeintegrated and mass-weighted sum of the RGA-measured mass peaks. Next, the impact of the resist exposure mode on the WS contamination result was investigated at imec, where the outgas test setup allows to expose the wafer with EUV irradiation as well as electrons in the same vacuum environment. It was found that minor differences observed in the WS test results, can be explained by adequate characterization of exposure intensity distribution and dose control. Finally the WS test results at imec from the different exposure modes were compared to the test results at NIST. The small differences in contamination that were observed could be explained by differences in test procedure, by using the time dependent RGA approach. From the combined work on outgassing measurements and WS contamination testing we have significantly improved our understanding of the relationship between outgassing and contamination processes induced by EUV photons and electrons. We have also demonstrated how to compare results obtained at different outgas testing sites, which is important in quantifying the potential risk to EUV device manufacturing posed by resist outgassing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.