Abstract
A series of nip-type microcrystalline silicon (mc-Si:H) single-junction solar cells has been studied by electrical characterisation, by transmission electron microscopy (TEM) and by Raman spectroscopy using 514 and 633 nm excitation light and both top- and bottomillumination. Thereby, a Raman crystallinity factor indicative of crystalline volume fraction is introduced and applied to the interface regions, i.e. to the mixed amorphous-microcrystalline layers at the top and at the bottomof entire cells. Results are compared with TEM observations for one of the solar cells. Similar Raman and electrical investigations have been conducted also on pin-type mc-Si:H single-junction solar cells. Experimental data show that for all nip and pin mc-Si:H solar cells, the open-circuit voltage linearly decreases as the average of the Raman crystallinity factors for top and bottom interface regions increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.