Abstract

Although individual gamma-crystallins from the human eye lens have not been successfully purified and sequenced, most of the genes coding for these lens-specific structural proteins have been cloned and characterized. To investigate the relationship between these genes and the gamma-crystallins of the human lens, we made use of mouse cell lines which contain stably integrated copies of the coding sequences for three of the human gamma-crystallin genes coupled to the human metallothionein IIA promoter. The proteins produced by these hybrid genes in cell culture were detected immunologically and compared by physical characteristics with the gamma-crystallins from the human lens. The protein encoded by the G3 gene showed properties identical to those of the 21,000-molecular-weight gamma-crystallin from 11-month-old lens. The protein isolated from the cells expressing the G4 gene was similar to a 19,000-molecular-weight lens gamma-crystallin, while gene G5 encodes a highly basic gamma-crystallin which may be synthesized in only limited amounts in the human lens. These correlations provide a basis for future investigations on the relationship between putative mutations in human gamma-crystallin genes and altered proteins in hereditary lens cataracts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.