Abstract

Type 2 diabetes mellitus patients are at significant risk of cardiovascular disease, however, the pathophysiology of these complications is complex and incompletely known in this population. The aim of this study was to compare the serum proteome of patients with type 2 diabetes mellitus presenting or not presenting cardiovascular disease with non-diabetic subjects to find essential proteins related to these cardiovascular complications. This cross-sectional study compares the serum proteome by a combination of protein depletion with 2D-DIGE (2-dimension Difference Gel Electrophoresis) methodology. The proteins differentially expressed were identified by MALDI TOF/TOF (Matrix-assisted laser desorption/ionization and Time-Of-Flight ion detector) or LC-MS/MS (Liquid Chromatography coupled to Mass-Mass Spectrometry). Type 2 diabetes mellitus patients with cardiovascular disease showed higher expression of plasma retinol binding protein and glutathione peroxidase-3 compared to those without cardiovascular disease and non-diabetic controls. These results show that proteins related to the inflammatory and redox state appear to play an important role in the pathogenesis of the cardiovascular disease in the type 2 diabetes mellitus patients.

Highlights

  • In developed countries, type 2 diabetes mellitus (T2DM) represents a major public health problem mainly by its relationship with different cardiovascular diseases (CVD) [1]

  • The patients with type 2 diabetes mellitus have increased risk for developing many complications mainly cardiovascular events depicting the major cause of mortality of this disease [6,7]

  • The probability of developing vascular complications in this population depends on a number of traditional factors and others that are not fully known

Read more

Summary

Introduction

Type 2 diabetes mellitus (T2DM) represents a major public health problem mainly by its relationship with different cardiovascular diseases (CVD) [1]. Multiple areas of research are open to explain this complex phenomenon [3] and the precise role of the different disturbed metabolic pathways is not well established. In this context, the identification of new molecules that take part in the development of these vascular complications in T2DM may be of great importance for improving the outcomes of this population or to design new therapeutic targets. The proteomic analysis is a hypothesis-free approach integrating genetic and epigenetic influences by examining the protein expression profiles and is not limited by the above knowledge

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.