Abstract

The hydrodynamic behaviors of fluidization perhaps significantly influence the uniformity of fluidization in fluidized bed incinerator. Good uniformity of fluidization expressed the air across uniformly through the bed and the particles being distributed well in the fluid stream. The aggregates, flocs and channels of particles do not happen during fluidization. The Good uniformity will maintain high heat and mass distribution to improve reaction efficiency. These parameters include the height of static bed, gas velocity, mixing and distribution of bed particle, which have rarely been studied in previous investigations. Consequently, this study examines how the hydrodynamic parameters affect the generation of organic pollutants (BTEXs and PAHs) during incineration. The statistical and power spectral analysis of the measured pressure fluctuation during incineration are used to elucidate the relationship between behaviors of fluidization and generation of pollutants during incineration. Experimental results show the organic concentration does not increase with uniformity of fluidization decreasing. The reason may be the explosion of the gas and the consequent thermal shock destroy the coalescent bubbles to form small bubbles again and enhance the efficiency of transfer of oxygen to increase combustion efficiency. Additionally, the mean amplitude and fluidized index of pressure fluctuation similarly vary with the concentration of organic pollutants. These two indices can be used to assess the efficiency of combustion. The four particle size distributions could be divided into two groups by statistical analysis. The Gaussian and narrow distributions belong to one group and the binary and flat the other. The organic concentration of the Gaussian and narrow distributions are lower than that of the other distributions. Consequently, the bed materials should maintain narrow or Gaussian distributions to maintain a good combustion efficiency during incineration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.