Abstract

BackgroundElevated blood pressure (BP) is a major risk factor for the progression of chronic kidney disease (CKD). However, little is known about the influence of prehypertension on CKD. In this study, we investigated the relationship between prehypertension and CKD in a middle-aged Korean population. Furthermore, we prospectively evaluated the effect of active BP control on deterioration of kidney function during the two-year follow-up.MethodsThe Korean Genome and Epidemiology Study is a community-based prospective cohort study started in 2001, with a follow-up survey conducted every two years. A total of 9509 participants aged 40–69 years were included in a baseline study. BP was classified according to the Seventh Report of the Joint National Committee on High BP (JNC-7) categories and CKD was defined as the presence of proteinuria or eGFR< 60mL/min/1.73m2. A multivariable logistic regression model was used to identify associations between BP and CKD.ResultsThe overall prevalence of CKD was 13.2%, and significantly increased with BP level. The multivariable-adjusted odds ratio of CKD was 1.59 for prehypertension and 2.27 for hypertension, compared with a normal BP. At the two-year follow-up, among the participants with prehypertension, subjects whose BP was poorly controlled had a significantly higher risk of eGFR drop (OR, 1.37; 95% CI, 1.13-1.67), as compared to controls. The prevalence of eGFR drop was 57.8% in the controlled BP group and 66.0% in the poorly-controlled BP group.ConclusionsPrehypertension, as well as hypertension, is significantly associated with CKD among middle-aged Koreans. Our results indicate that active control of the blood-pressure of prehypertensive individuals is needed to prevent deterioration of kidney function.

Highlights

  • Elevated blood pressure (BP) is a major risk factor for the progression of chronic kidney disease (CKD)

  • According to the Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines, CKD is defined as a marker of kidney damage and/or glomerular filtration rate (GFR) < 60 mL/min/1.73 m2 for at least three months; in addition, GFR is usually estimated from serum creatinine (Scr) values alone or prediction equations that take into account the Scr, age, gender and race [8]

  • To determine the effect of BP control on deterioration of kidney function, we prospectively evaluated estimated glomerular filtration rate (eGFR) drop according to the change of BP during the two-year follow-up

Read more

Summary

Introduction

Elevated blood pressure (BP) is a major risk factor for the progression of chronic kidney disease (CKD). We investigated the relationship between prehypertension and CKD in a middle-aged Korean population. In a population-based cross-sectional epidemiologic study in Korea, the prevalences of CKD and decreased kidney function were 13.7% and 5.0%, respectively [7]. According to the Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines, CKD is defined as a marker of kidney damage and/or glomerular filtration rate (GFR) < 60 mL/min/1.73 m2 for at least three months; in addition, GFR is usually estimated from serum creatinine (Scr) values alone or prediction equations that take into account the Scr, age, gender and race [8]. Use of estimated glomerular filtration rate (eGFR) is commonly recommended to screen patients with CKD [8,9]. Management of high risk patients who have hypertension and diabetes is important [8,9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.