Abstract

BackgroundThe digestion of food is known to alter the hemodynamics of the body significantly. The purpose of this study was to study the postprandial changes in stroke volume (SV), cardiac output (CO) and left ventricular (LV) longitudinal systolic and diastolic functions measured with tissue Doppler imaging, in relation to gastric emptying rate (GER), satiety, and glucose and insulin concentrations in healthy subjects.MethodsTwenty-three healthy subjects were included in this study. The fasting and postprandial changes at 30 min and 110 min in CO, heart rate (HR) and blood pressure were measured. Moreover, tissue Doppler imaging systolic (S'), early (E') and late (A') mitral annular diastolic velocities were measured in the septal (s) and lateral (l) walls. Glucose and insulin concentrations, and satiety were measured before and 15, 30, 45, 60, 90, and 120 min after the start of the meal. The GER was calculated as the percentage change in the antral cross-sectional area 15-90 min after ingestion of the meal.ResultsThis study show that both CO, systolic longitudinal ventricular velocity of the septum (S's) and lateral wall (S'l), the early diastolic longitudinal ventricular velocity of the lateral wall (E'l), the late diastolic longitudinal ventricular velocity of the septum (A's) and lateral wall (A'l) increase significantly, and were concomitant with increased satiety, antral area, glucose and insulin levels. The CO, HR and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting. The satiety was correlated to HR and diastolic blood pressure. The insulin level was correlated to HR.ConclusionsThis study shows that postprandial CO, HR, SV and LV longitudinal systolic and diastolic functions increase concomitantly with increased satiety, antral area, and glucose and insulin levels. Therefore, patients should not eat prior to, or during, cardiac evaluation as the effects of a meal may affect the results and their interpretation.Trial RegistrationClinicalTrials.gov: NCT01027507

Highlights

  • The digestion of food is known to alter the hemodynamics of the body significantly

  • Postprandial glucose and insulin responses The glucose level at 30 min was significantly higher than the baseline value (P = 0.003), and the value at 120 min (P = 0.000) (Figure 1)

  • The purpose of this study was to measure the postprandial changes in left ventricular (LV) longitudinal, systolic and diastolic functions, using Tissue Doppler imaging (TDI), and to investigate possible correlations to gastric emptying rate (GER), satiety, and glucose and insulin concentrations in healthy subjects

Read more

Summary

Introduction

The purpose of this study was to study the postprandial changes in stroke volume (SV), cardiac output (CO) and left ventricular (LV) longitudinal systolic and diastolic functions measured with tissue Doppler imaging, in relation to gastric emptying rate (GER), satiety, and glucose and insulin concentrations in healthy subjects. TDI is used to assess both regional and the global ventricular function in systole and diastole, by measuring the tissue velocity at specific locations in the heart. TDI has been validated and may have a potential role in clinical applications such as the evaluation of myocardial ischemia (at rest and with stress echocardiography) and altered global and regional systolic and diastolic function in cardiomyopathies [3,4,5,6,7,8,9,10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.