Abstract

Morphological plasticity has been demonstrated between breeding and anestrous seasons in the ewe hypothalamus, particularly for the gonadotropin-releasing hormone (GnRH) system. We sought to determine the impact of a photoperiodic transition, from long days (LD, 16 h light/24 h) to short days (SD; 8 h light/24 h), on the association between a marker of cerebral plasticity, the polysialylated form of neural cell adhesion molecule (PSA-NCAM), and two diencephalic populations: the GnRH and β-endorphin (β-END) neurons, the latter being potent inhibitors of GnRH neuronal activity. We also estimated the number of contacts on GnRH neurons after the passage to SD, using synaptophysin as a marker for synaptic buttons. Those parameters were evaluated in ovariectomized estradiol-replaced ewes using double immunocytochemistry and confocal microscopy at different times after the transition to SD: day 0 (D0), D30, D45, D60 and D112. Luteinizing hormone (LH) secretion was recorded throughout the experiment. High LH levels were observed only at D112. Significantly more PSA-NCAM was found in the GnRH neuron perimeters in the D112 group than in the other groups. This increase was not associated with any change in the number of synaptophysin-immunoreactive contacts on GnRH neurons. The β-END peri-neuronal space was affected negatively by the transition to SD: the percentage of PSA-NCAM on β-END neurons decreased between D45 and D112 in the posterior two thirds of the arcuate nucleus (ARC). These results suggest that photoperiod may reorganize cell interactions in different hypothalamic areas, ultimately reactivating GnRH neurons, in our model of ovariectomized-estradiol replaced ewes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.