Abstract

Caenorhabditis elegans sperm are nonflagellated cells that lack actin and myosin yet can form pseudopods to propel themselves over solid substrates. Surface-attached probes such as latex beads, lectins, and antimembrane protein monoclonal antibodies move rearward over the dorsal pseudopod surface of sessile cells. Using monoclonal antibodies against membrane proteins of C. elegans sperm to examine the role of localized membrane assembly and rearward flow in crawling movement, we determined that substrates prepared by coating glass with antimembrane protein antibodies, but not naked glass or other nonmembrane-binding proteins, promote sperm motility. Sperm locomotion is inhibited in a concentration-dependent fashion when cells are bathed with soluble antimembrane protein monoclonal antibodies but not with antimouse Ig antibodies or a monoclonal antibody against a sperm cytoplasmic protein. Our results suggest that C. elegans sperm crawl by gaining traction with substrate-attached ligands via their surface proteins and by using the motor that moves those proteins rearward on unattached cells to pull the entire cell forward. Continuous insertion of new proteins at the front of the cell and their subsequent adhesion to the substrate allows this process to continue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call