Abstract

The picoplanktonic pelagophyte Aureococcus anophagefferens could trigger harmful algal blooms (HABs) to discolor water in brown, known as brown tide. Since 2009, large-scale brown tides, caused by A. anophagefferens, had been occurred in early summer for three consecutive years in the coastal waters of Qinhuangdao, China and resulted considerable deleterious effects on the scallop mariculture industry. The causes for the occurrence of brown tides were not fully understood. Therefore, we conducted a one-year survey from June 2013 to May 2014 to study the seasonal succession of the phytoplankton community, including A. anophagefferens and its relationship with environmental variables in the area. The results revealed that the population dynamics of the phytoplankton community were significant variation with seasonal succession, in which A. anophagefferens played an important role during the entire year. The trend of the whole diversity index indicated that the community structure became more stable in winter. The results of principle component analysis (PCA) applied to the environmental factors indicated four major seasonal groups in the environmental variables. The water temperature, silicate and total nitrogen were contributed to the environment in summer, autumn and spring, respectively. In addition, a few another environmental factors commonly contributed to the winter waterbody, indicated that the aquatic environment is more complex in the cold season. The result revealed that the phytoplankton community structure and its variation were mainly affected by the hydrological factors, by using the redundancy analysis (RDA) for the relationship between dominant species and the environment. Furthermore, we inferred Chaetoceros decipiens as a potential species for the breakout of harmful algae blooms (HABs) by RDA ordination. We concluded that the key factor for the seasonal variations in the dynamics of phytoplankton community could be the hydrological parameters in Qinghuangdao coastal area. This research may provide more insight into the occurrence mechanism of brown tide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call