Abstract

BackgroundTo manage patellofemoral joint disorders, a complete understanding of the in vivo patellofemoral kinematics is critical. However, as one of the parameters of joint kinematics, the location and orientation of the patellofemoral finite helical axis (FHA) remains unclear. The purpose of this study is to quantify the location and orientation of the patellar FHA, both in vivo and non-invasively at various flexion angles, and evaluate the relationship of the FHA and the trans-epicondylar axis (TEA).MethodsThe magnetic resonance (MR) images of 18 unilateral knees were collected at full extension, 30°, 60°, 90°, and maximum angle of knee flexion. Three-dimensional models of the knee joint at different flexion angles were created using the MR images, and then used to calculate the patellar tracking and FHA with a spline interpolation algorithm. By using a coordinate system based on the TEA, the FHA tracking was quantified. Six parameters concerning the location and orientation of the patellar FHA were analysed.ResultsThe average patellar FHA drew an L-shaped tracking on the midsagittal plane moving from the posteroinferior to the anterosuperior side of the TEA with knee flexion. Before 90° flexion, the patellar rotational radius decreased slightly, with an average value of 5.65 ± 1.09 cm. During 20° to 90° knee flexion, the average angle between the patellar FHA and the TEA was approximately 10° and that between the FHA and the coronal plane was maintained at about 0°, while that between the FHA and the level plane fluctuated between − 10° and 10°.ConclusionsThis study quantitatively reported the continuous location and direction of the patellar FHA during knee flexion. The patellar FHA was close to but not coincident with the femoral TEA both in location and orientation, and the patellar rotational radius decreased slightly with knee flexion. These findings could provide a clear direction for further studies on the difference in patellofemoral FHA among various types of patellofemoral disorders, and provide a foundation for the application of FHA in surgical evaluation, preoperative planning and prosthesis design, thereby assisting in the diagnosis and treatment of patellofemoral disorders.

Highlights

  • Patellofemoral disorders have a high incidence rate and are challenging to manage [1, 2]

  • The patellar finite helical axis (FHA) was close to but not coincident with the femoral trans-epicondylar axis (TEA) both in location and orientation, and the patellar rotational radius decreased slightly with knee flexion. These findings could provide a clear direction for further studies on the difference in patellofemoral FHA among various types of patellofemoral disorders, and provide a foundation for the application of FHA in surgical evaluation, preoperative planning and prosthesis design, thereby assisting in the diagnosis and treatment of patellofemoral disorders

  • Considering that joint kinematics is the mechanistic link between musculoskeletal anatomy and joint function, a complete understanding of the physical patellofemoral dynamics is critical in clinical practice

Read more

Summary

Introduction

Patellofemoral disorders have a high incidence rate and are challenging to manage [1, 2]. Patellar tracking and the finite helical axis (FHA) are both parameters of patellofemoral kinematics. A close relationship between the FHA and the femoral transepicondylar axis (TEA) is demonstrated [7, 8]. In consideration for the coupled motion of the tibiofemoral and patellofemoral articulations, a similar relationship between the patellar FHA and the TEA might exist. To manage patellofemoral joint disorders, a complete understanding of the in vivo patellofemoral kinematics is critical. As one of the parameters of joint kinematics, the location and orientation of the patellofemoral finite helical axis (FHA) remains unclear. The purpose of this study is to quantify the location and orientation of the patellar FHA, both in vivo and non-invasively at various flexion angles, and evaluate the relationship of the FHA and the trans-epicondylar axis (TEA)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call