Abstract

BackgroundNeuronal computations related to sensory and motor activity along with the maintenance of spike discharge, synaptic transmission, and associated housekeeping are energetically demanding. The most efficient metabolic process to provide large amounts of energy equivalents is oxidative phosphorylation and thus dependent on O2 consumption. Therefore, O2 levels in the brain are a critical parameter that influences neuronal function. Measurements of O2 consumption have been used to estimate the cost of neuronal activity; however, exploring these metabolic relationships in vivo and under defined experimental conditions has been limited by technical challenges.ResultsWe used isolated preparations of Xenopus laevis tadpoles to perform a quantitative analysis of O2 levels in the brain under in vivo-like conditions. We measured O2 concentrations in the hindbrain in relation to the spike discharge of the superior oblique eye muscle-innervating trochlear nerve as proxy for central nervous activity. In air-saturated bath Ringer solution, O2 levels in the fourth ventricle and adjacent, functionally intact hindbrain were close to zero. Inhibition of mitochondrial activity with potassium cyanide or fixation of the tissue with ethanol raised the ventricular O2 concentration to bath levels, indicating that the brain tissue consumed the available O2. Gradually increasing oxygenation of the Ringer solution caused a concurrent increase of ventricular O2 concentrations. Blocking spike discharge with the local anesthetics tricaine methanesulfonate diminished the O2 consumption by ~ 50%, illustrating the substantial O2 amount related to neuronal activity. In contrast, episodes of spontaneous trochlear nerve spike bursts were accompanied by transient increases of the O2 consumption with parameters that correlated with burst magnitude and duration.ConclusionsControlled experimental manipulations of both the O2 level as well as the neuronal activity under in vivo-like conditions allowed to quantitatively relate spike discharge magnitudes in a particular neuronal circuitry with the O2 consumption in this area. Moreover, the possibility to distinctly manipulate various functional parameters will yield more insight in the coupling between metabolic and neuronal activity. Thus, apart from providing quantitative empiric evidence for the link between physiologically relevant spontaneous spike discharge in the brain and O2-dependent metabolism, isolated amphibian preparations are promising model systems to further dissociate the O2 dynamics in relation to neuronal computations.

Highlights

  • Neuronal computations related to sensory and motor activity along with the maintenance of spike discharge, synaptic transmission, and associated housekeeping are energetically demanding

  • Following placement of the isolated preparation in the center of the recording chamber, one O2 electrode was positioned at a distance of 5 mm lateral to the preparation in a depth below the Ringer surface that matched the floor of the IVth ventricle

  • A comparable, matching dynamic of the O2 levels in the bath and the ventricle was observed during the return of the O2 concentration to air-saturated bath Ringer levels. These findings suggest that (1) the shape of the IVth ventricle generally poses no physical barrier for an increase/decrease of the O2 concentration when the bath O2 level is altered and that (2) the anoxic condition inside the ventricular compartment in intact preparations likely derives from the O2 consumption by the metabolically active tissue in the vicinity

Read more

Summary

Introduction

Neuronal computations related to sensory and motor activity along with the maintenance of spike discharge, synaptic transmission, and associated housekeeping are energetically demanding. The brain requires a disproportionately large amount of energy compared to its fraction of body mass [1] This large amount of energy ensures maintenance of the functionality of the cellular components such as neurons and glial cells [2] and is indicated by the considerable O2 consumption by this organ [3]. The close correlation between energy demand and O2 supply derives from the fact that the generation of adenosine triphosphate (ATP) as most important energy equivalent occurs mainly via oxidative phosphorylation [4, 5] This highly productive metabolic process takes place in mitochondria and requires considerable amounts of O2 [4]. Only few studies have provided reliable estimates of the O2 consumption under defined experimental conditions (e.g., neuronal activity patterns) because of the generally challenging technical requirement of O2 measurements and the difficult relation between consumption and spike firing [5, 8,9,10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call