Abstract

The relationship between finite-horizon mean-field stochastic H2/H∞ control and Nash equilibrium strategies is investigated in this technical note. First, the finite-horizon mean-field stochastic bounded real lemma (SBRL) is established, which is key to developing the H∞ theory. Second, for mean-field stochastic differential equations (MF-SDEs) with control- and state-dependent noises, it is revealed that the existence of Nash equilibrium strategies is equivalent to the solvability of generalized differential Riccati equations (GDREs). Furthermore, the existence of Nash equilibrium strategies is equivalent to the solvability of H2/H∞ control for MF-SDEs with control- and state-dependent noises. However, for mean-field stochastic systems with disturbance-dependent noises, these two problems are not equivalent. Finally, a sufficient and necessary condition is presented via coupled matrix-valued equations for the finite-horizon H2/H∞ control of mean-field stochastic differential equations with disturbance-dependent noises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.