Abstract

To investigate whether low FiO2 affects muscle oxygenation and the rate of decline in peak torque (DR) during isokinetic knee extension, subjects performed 50 isokinetic knee extensions at 180 degrees /s and at 0.5 Hz while inhaling low O2 gas (12 %O2; H) or air (N). Muscle oxygenation kinetics was assessed by near-infrared spectroscopy, and whole-body V.O2 and HR were measured. We calculated total-, oxy- and deoxy-hemoglobin/myoglobin concentrations (TotalHb/Mb, OxyHb/Mb, DeoxyHb/Mb), and the slopes of the change in OxyHb/Mb during exercise. SpO2 decreased in H while DR and V.O2 did not differ between the conditions. During exercise, OxyHb/Mb was lower in H than in N, and DeoxyHb/Mb was higher in H than in N. TotalHb/Mb began to increase from the resting level earlier in H. HR was higher during the latter half of the exercise in H. The slopes of the change in OxyHb/Mb were the same in the two conditions. Our results show that low FiO2 decreases SpO2 and muscle oxygenation during maximal isokinetic knee extension. However, low SpO2 and muscle oxygenation did not affect the rates of decline of peak torque. These results suggest that the decline in peak torque occurs for reasons other than O2 availability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.