Abstract

This paper presents the ground-work of implementing the multibody dynamics codes to analyzing nonlinear coupled oscillators. The recent developments of the multibody dynamics have resulted in several computer codes that can handle large systems of differential and algebraic equations (DAE). However, these codes cannot be used in their current format without appropriate modifications. According to multibody dynamics theory, the differential equations of motion are linear in the acceleration, and the constraints are appended into the equations of motion through Lagrange's multipliers. This formulation should be able to predict the nonlinear phenomena established by the nonlinear vibration theory. This can be achieved only if the constraint algebraic equations are modified to include all the system kinematic nonlinearities. This modification is accomplished by considering secondary nonlinear displacements which are ignored in all current codes. The resulting set of DAE are solved by the Gear stiff integrator. The study also introduced the concept of constrained flexibility and uses an instantaneous energy checking function to improve integration accuracy in the numerical scheme. The general energy balance is a single scalar equation containing all the energy component contributions. The DAE solution is then compared with the solution predicted by the nonlinear vibration theory. It also establishes new foundation for the use of multibody dynamics codes in nonlinear vibration problems. It is found that the simulation CPU time is much longer than the simulation of the original equations of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.