Abstract

BackgroundThe association between repetitive hip moment impulse and the progression of hip osteoarthritis is a recently recognized area of study. A sit-to-stand movement is essential for daily life and requires hip extension moment. Although a change in the sit-to-stand movement time may influence the hip moment impulse in the sagittal plane, this effect has not been examined. The purpose of this study was to clarify the relationship between sit-to-stand movement time and hip moment impulse in the sagittal plane.MethodsTwenty subjects performed the sit-to-stand movement at a self-selected natural speed. The hip, knee, and ankle joint angles obtained from experimental trials were used to perform two computer simulations. In the first simulation, the actual sit-to-stand movement time obtained from the experiment was entered. In the second simulation, sit-to-stand movement times ranging from 0.5 to 4.0 s at intervals of 0.25 s were entered. Hip joint moments and hip moment impulses in the sagittal plane during sit-to-stand movements were calculated for both computer simulations.Results and conclusionsThe reliability of the simulation model was confirmed, as indicated by the similarities in the hip joint moment waveforms (r = 0.99) and the hip moment impulses in the sagittal plane between the first computer simulation and the experiment. In the second computer simulation, the hip moment impulse in the sagittal plane decreased with a decrease in the sit-to-stand movement time, although the peak hip extension moment increased with a decrease in the movement time. These findings clarify the association between the sit-to-stand movement time and hip moment impulse in the sagittal plane and may contribute to the prevention of the progression of hip osteoarthritis.

Highlights

  • The association between repetitive hip moment impulse and the progression of hip osteoarthritis is a recently recognized area of study

  • In the second computer simulation, we examined the hip moment impulse in the sagittal plane during various sit-to-stand movement times using the simulation model tested in the first computer simulation

  • The main finding in this study is that the hip moment impulse in the sagittal plane during sit-to-stand movement decreased with a decrease in the sit-to-stand movement time (Fig. 5b), thereby confirming our hypothesis

Read more

Summary

Introduction

The association between repetitive hip moment impulse and the progression of hip osteoarthritis is a recently recognized area of study. Tateuchi et al [10] identified biomechanical risk factors related to joint-space narrowing in patients with hip osteoarthritis. They evaluated gait parameters at baseline using a three-dimensional motion capture system and examined the degree of hip joint space narrowing after 12 months. They proposed a new index called the daily cumulative hip moment, which is the product of the hip moment impulse during the stance phase and mean steps per day, and demonstrated that high daily cumulative hip moments in the frontal and sagittal planes were risk factors for hip osteoarthritis. The evaluation of hip moment impulse as an index of hip joint load during various movements (e.g., stairs, sit-to-stand movement, and sloped walking) in daily life may be important in identifying movement patterns with a low hip moment impulse

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call