Abstract

Conjugated semiconducting polymers, such as poly(3-hexylthiophene) (P3HT), are poised to play an integral role in the development of organic electronic devices; however, their performance is governed by factors that are intrinsically coupled: dopant concentration, carrier mobility, crystal structure, and mesoscale morphology. We utilize synchrotron X-ray scattering and electrochemical impedance spectroscopy to probe the crystal structure and electronic properties of P3HT in situ during electrochemical doping. We show that doping strains the crystalline domains, coincident with an exponential increase in hole mobility. We believe these observations provide guidance for the development of improved theoretical models for charge transport in semiconducting polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.