Abstract

The relationship between cytotoxicity and mitochondrial dysfunction caused by propyl gallate (PG) has been studied in hepatocytes freshly prepared from fasted rats. Hepatocytes isolated from fasted (18 h) rats were significantly more susceptible to the toxicity of PG than hepatocytes from fed rats. The addition of fructose (15 mM), an alternative carbohydrate source, to hepatocyte suspensions resulted in the prevention of PG (1 mM)-induced cell killing accompanied by decrease in intracellular ATP loss during a 3 h-incubation period. Despite this, fructose did not completely prevent an abrupt loss of intracellular glutathione caused by PG, but effectively inhibited the loss of protein thiol levels. Fructose elicited a concentration (0.5–20 mM)-dependent protection against the cytotoxicity of 1.5 mM PG. The incubation of hepatocytes with sodium azide (4 mM), an inhibitor of oxidative phosphorylation, enhanced the toxicity induced by PG (1 mM), but coincubation with fructose delayed the onset of toxicity. Neither azide alone nor fructose plus azide did affect the cell viability during the incubation period. Furthermore, the addition of 2 mM salicylamide, nontoxic to hepatocytes during the incubation period, enhanced PG (1 mM)-induced cytotoxicity and decreased the loss of free PG. These results indicate that the onset of cytotoxicity caused by PG may depend on the intracellular energy status and that mitochondria are critical targets for the compound. In addition, the toxicity caused by the inhibition of mitochondrial ATP synthesis is related to the concentration of PG remaining in cell suspensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call