Abstract

Different microstructures in SiC ceramics containing Al2O3, Y2O3, and CaO as sintering additives were prepared by hot‐pressing and subsequent annealing. The microstructures obtained were analyzed by image analysis. Crack deflection was frequently observed as the toughening mechanism in samples having elongated α‐SiC grains with aspect ratio >4, length >2 μm, and grain thickness (t) <3 μm (defined as key grains 1). Crack bridging was the dominant toughening mechanism observed in samples having grains with thickness of 1 μm < t < 3 μm and length >2 μm (key grains 2). The values of fracture toughness varied from 5.4 to 8.7 MPa·m1/2 with respect to microstructural characteristics, characterized by mean grain thickness, mean aspect ratio, and total volume fraction of key grains. The difference in fracture toughness was mainly attributed to the amount of key grains participating in the toughening processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.