Abstract
Neutron scattering studies and measurements of the dielectric susceptibility ε and ferroelectric polarization P have been carried out under various magnetic fields H for single-crystal samples of the multiferroic system LiVCuO 4 with quasi one-dimensional spin 1/2 Cu 2+ chains formed of edge-sharing CuO 4 square planes, and the relationship between the magnetic structure and ferroelectricity has been studied. The ferroelectric polarization is significantly suppressed by the magnetic field H above 2 T applied along the a and b axes. When H = 0, a helical magnetic structure with the helical axis parallel to c has been confirmed. The magnetic structure under the field along a has been determined, where the a b -plane structure changes to the helical one with the helical axis parallel to H with increasing the field through ∼2 T. The ferroelectric polarization along a at H = 0 is found to be proportional to the neutron magnetic scattering intensity, indicating that the magnetic order is closely related to the appearance of the ferroelectricity. The relationship between the magnetic structure and ferroelectricity of LiVCuO 4 is discussed by considering the existing theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.