Abstract

The Pb(Zr,Ti)O3 (PZT) disordered solid solution is widely used in piezoelectric applications owing to its excellent electromechanical properties. Six different structural phases have been observed for PZT at ambient pressure, each with different lattice parameters and average electric polarization. It is of significant interest to understand the microscopic origin of the complicated phase diagram and local structure of PZT. Here, using density functional theory calculations, we show that the distortions of the material away from the parent perovskite structure can be predicted from the local arrangement of the Zr and Ti cations. We use the chemical rules obtained from density functional theory to create a phenomenological model to simulate PZT structures. We demonstrate how changes in the Zr/Ti composition give rise to phase transitions in PZT through changes in the populations of various local Pb atom environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.