Abstract

Cloud-to-ground (CG) lightning data, wind field data derived from dual-Doppler radars, and radar reflectivity data are combined to investigate the relationships between CG lightning and the parameters associated with vertical airflow. A new method for the identification of thunderstorm cells based on the aggregation of flashes is developed. It is found that approximately 79.1% of CG flashes are located in the region featuring weak vertical velocity at the 0°C level, ranging from −5 to 5ms−1, with the majority in the weak updraft region, especially for negative CG lightning and the CG lightning in the initial stage of thunderstorms. The CG lightning rate is correlated with the volume of updraft for vertical velocities within certain limits. The sum of absolute precipitation ice mass flux in the region from 7 to 11km is more significantly correlated with the CG flash rate, with correlation coefficients of 0.73, 0.71, and 0.74 for the initial, mature, and dissipating stages of thunderstorms, respectively. On average, the updraft in the thunderstorm at the stage when the last CG flash occurs accounts for a much smaller ratio to the whole volume of the thunderstorm than that corresponding to the first CG flash. The maximum updraft and maximum height of the 10 and 20ms−1 updraft speeds are close for the first and last CG flashes, indicating the dependence of the lightning on strength of updraft. It is deduced that layered large-range charges may be more conducive to the generation of CG flashes than charge pockets in the thunderstorm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.