Abstract
Use of recycled materials in asphalt mixtures is an important sustainability practice, and yet the oxidized asphalts introduced may compromise the cracking performance of pavement. This study evaluated the fatigue crack resistance of ten asphalt mixtures containing reclaimed asphalt pavement or recycled asphalt shingles. The materials were acquired from the full-scale test lanes constructed at the Federal Highway Administration Accelerated Loading Facility in McLean, Virginia. Three simple performance tests were employed given their simple testing procedures and analysis approaches: semi-circular bend, indirect tension, and Texas overlay tests. The test data were analyzed to obtain the corresponding fatigue parameters following the latest test standards and relevant literature. A new parameter named corrected crack progression rate (CCPR) was proposed for the Texas overlay test considering the viscoelastic nature of asphalt mixtures. Statistical comparison was performed on the laboratory results to assess the potential of each parameter in discriminating mixtures. This study further investigated the relationship between the laboratory results and fatigue performance of the full-scale lanes. It was found that the proposed CCPR parameter for the Texas overlay test provided the strongest correlation with field performance. Additionally, the fatigue life parameter determined from the same laboratory test, although relatively more variable, demonstrated the highest potential in detecting differences in mixture compositions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.