Abstract

Intracellular H+ ion mobility in eukaryotic cells is low because of intracellular buffering. We have investigated whether Hi+ mobility varies with pHi. A dual microperfusion apparatus was used to expose guinea-pig or rat myocytes to small localized doses (3-5 mm) of ammonium chloride (applied in Hepes-buffered solution). Intracellular pH (pHi) was monitored confocally using the fluorescent dye, carboxy-SNARF-1. Local ammonium exposure produced a stable, longitudinal pHi gradient. Its size was fed into a look-up table (LUT) to give an estimate of the apparent intracellular proton diffusion coefficient (D(app)H). LUTs were generated using a diffusion-reaction model of Hi+ mobility based on intracellular buffer diffusion. To examine the pHi sensitivity of D(app)H, whole-cell pHi was initially displaced using a whole-cell ammonium or acetate prepulse, before locally applying the low dose of ammonium. In both rat and guinea-pig, D(app)H decreased with pHi over the range 7.5-6.5. In separate pipette-loading experiments, the intracellular diffusion coefficient for carboxy-SNARF-1 (a mobile-buffer analogue) exhibited no significant pHi dependence. The pHi sensitivity of D(app)H is thus likely to be governed by the mobile fraction of intrinsic buffering capacity. These results reinforce the buffer hypothesis of Hi+ mobility. The pHi dependence of D(app)H was used to characterize the mobile and fixed buffer components, and to estimate D(mob) (the average diffusion coefficient for intracellular mobile buffer). One consequence of a decline in Hi+ mobility at low pHi is that it will predispose the myocardium to pHi nonuniformity. The physiological relevance of this is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call