Abstract

The effect of interlayers of Ti, and Ti(C,N) on the adhesion, hardness and friction coefficient of DLC films deposited using a Fast Atom Beam (FAB) source has been studied. Values obtained for DLC films on top of interlayers were compared with those of DLC films directly deposited on Co-Cr substrates by both the FAB source and RF CVD techniques. The scratch test adhesion of such coatings can be classified in the following ascending order: DLC/Ti, DLC/no interlayer, DLC/Ti(C,N). The surface composite hardness is greatly improved by a Ti(C,N) interlayer. However, DLC films deposited on Ti(C,N) failed during the pin-of-disc test whilst those on Ti and without an interlayer exhibited low friction coefficients and excellent wear performance. An explanation is developed in order to explain the causes of film failure during the pin-on-disc test. For a given interlayer hardness, an adhesion threshold is required to survive the pin-on-disc test. The higher the hardness, the greater the required adhesion threshold,...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.