Abstract

In this exploratory study, indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-D-glucan levels were determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected in five Cincinnati area homes that had no visible mold growth. The total count of fungal spores and pollen in the collected samples was conducted under the microscope and Limulus Amebocyte Lysate (LAL) chromogenic assay method was utilized for the determination of the (1→3)-β-D-glucan concentration. For the combined number concentration of fungal spores and pollen, the indoor and outdoor geometric mean values were 573 and 6,435 m−3, respectively, with a geometric mean of the Indoor/Outdoor (I/O) ratio of .09. The geometric means of indoor and outdoor (1→3)-β-D-glucan concentrations were .92 and 6.44 ng m−3, respectively, with a geometric mean of the I/O ratio equal to .14. The I/O ratio of (1→3)-β-D-glucan concentration was found to be marginally greater than that calculated based on the combined number concentration of fungal spores and pollen. This suggests that (1→3)-β-D-glucan data are affected not only by intact spores and pollen grains but also by the airborne fragments of fungi, pollen, and plant material, which are ignored by traditional enumeration methodologies. Since the (1→3)-β-D-glucan level may elucidate the total exposure to fungal spores, pollen, and fungal fragments, its I/O ratio may be used as a risk marker for mold and pollen exposure in indoor environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call