Abstract

Analogs of benztropine (BZT) bind to the dopamine (DA) transporter and inhibit DA uptake but often have behavioral effects that differ from those of cocaine and other DA-uptake inhibitors. To better understand these differences, we examined the relationship between locomotor-stimulant effects of cocaine, 1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)-piperazine (GBR 12909), and BZT analogs [(3alpha-[bis(4'-fluorophenyl)methoxy]-tropane) (AHN 1-055) and (N-allyl-3alpha-[bis(4'-fluorophenyl)methoxy]-tropane) (AHN 2-005)] and their in vivo displacement of the DA transporter ligand [125I]3beta-(4-iodophenyl)-tropan-2beta-carboxylic acid isopropyl ester hydrochloride (RTI-121) in striatum. Cocaine, GBR 12909, and BZT analogs each displaced [125I]RTI-121 and stimulated locomotor activity in a dose- and time-dependent manner. The time course revealed a slower onset of both effects for AHN 1-055 and AHN 2-005 compared with cocaine and GBR 12909. The BZT analogs were less effective than cocaine and GBR 12909 in stimulating locomotor activity. Locomotor stimulant effects of cocaine were generally greater than predicted by the regression of displacement of [125I]RTI-121 and effect at short times after injection and less than predicted at longer times after injection. This result suggests that the apparent rate of occupancy of the DA transporter, in addition to percentage of sites occupied, contributes to the behavioral effects of cocaine. The present results suggest that among drugs that act at the DA transporter, the slower apparent rates of occupancy with the DA transporter by the BZT analogs may contribute in an important way to differences in their effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call