Abstract
BackgroundThe patterns of expression of homoeologous genes in hexaploid bread wheat have been intensively studied in recent years, but the interaction between structural genes and their homoeologous regulatory genes remained unclear. The question was as to whether, in an allopolyploid, this interaction is genome-specific, or whether regulation cuts across genomes. The aim of the present study was cloning, sequence analysis, mapping and expression analysis of F3H (flavanone 3-hydroxylase – one of the key enzymes in the plant flavonoid biosynthesis pathway) homoeologues in bread wheat and study of the interaction between F3H and their regulatory genes homoeologues – Rc (red coleoptiles).ResultsPCR-based cloning of F3H sequences from hexaploid bread wheat (Triticum aestivum L.), a wild tetraploid wheat (T. timopheevii) and their putative diploid progenitors was employed to localize, physically map and analyse the expression of four distinct bread wheat F3H copies. Three of these form a homoeologous set, mapping to the chromosomes of homoeologous group 2; they are highly similar to one another at the structural and functional levels. However, the fourth copy is less homologous, and was not expressed in anthocyanin pigmented coleoptiles. The presence of dominant alleles at the Rc-1 homoeologous loci, which are responsible for anthocyanin pigmentation in the coleoptile, was correlated with F3H expression in pigmented coleoptiles. Each dominant Rc-1 allele affected the expression of the three F3H homoeologues equally, but the level of F3H expression was dependent on the identity of the dominant Rc-1 allele present. Thus, the homoeologous Rc-1 genes contribute more to functional divergence than do the structural F3H genes.ConclusionThe lack of any genome-specific relationship between F3H-1 and Rc-1 implies an integrative evolutionary process among the three diploid genomes, following the formation of hexaploid wheat. Regulatory genes probably contribute more to the functional divergence between the wheat genomes than do the structural genes themselves. This is in line with the growing consensus which suggests that although heritable morphological traits are determined by the expression of structural genes, it is the regulatory genes which are the prime determinants of allelic identity.
Highlights
The patterns of expression of homoeologous genes in hexaploid bread wheat have been intensively studied in recent years, but the interaction between structural genes and their homoeologous regulatory genes remained unclear
Recognizing elements for c1 have been identified in the promoter sequence of Arabidopsis thaliana F3H gene, suggesting that Rc-1 can probably exert a regulatory role for wheat F3H, too
Sequence analysis of F3H genes in wheat and its relatives Nine F3H copies were isolated by PCR cloning from bread wheat, the tetraploid wild wheat T. timopheevii (AAGG) and the presumed diploid progenitors of the A, B/G and D genomes (A: T. urartu, B/G:Ae. speltoides, D: Ae. tauschii) (Table 1)
Summary
The patterns of expression of homoeologous genes in hexaploid bread wheat have been intensively studied in recent years, but the interaction between structural genes and their homoeologous regulatory genes remained unclear. Two major groups of anthocyanin pigmentation genes are present in wheat: the first includes Rc-1, Pc-1, Pan-1, Plb-1 and Pls-1 which encode the pigmentation in, respectively, the coleoptile, culm, anthers, leaf blades and leaf sheaths; while the second consists of Pp and Ra, which are expressed in, respectively, the pericarp and auricle [5]. The former genes are closely linked to one another on each of the short arms of the homoeologous group 7 chromosomes. F3H orthologues have been isolated in barley and maize [13,14] as well as in a range of other plant species http://www.ncbi.nlm.nih.gov/Database/, but have yet to be described in wheat
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.