Abstract

The anti-apoptotic protein Bfl-1, also known as A1, belongs to the Bcl-2 family of proteins and interacts with pro-apoptotic Bcl-2 counterparts to regulate programed cell death. As demonstrated for other anti-apoptotic Bcl-2 proteins, Bfl-1/A1 has also been shown to be overexpressed in various human cancers and hence they are attractive targets for anticancer drugs. Peptides derived from the BH3 region of pro-apoptotic Bcl-2 proteins have been shown to elicit similar biological response as that of parent proteins. BH3 peptides from different pro-apoptotic proteins have wide range of affinities for Bfl-1/A1. Experimentally determined complex structures show that the hydrophobic side of amphipathic BH3 peptides binds to the hydrophobic groove formed by the α-helical bundle of Bfl-1/A1 protein. Apart from the length and amino acid composition, a BH3 peptide’s ability to form a stable helical structure has been suggested to be important for its high binding affinity. Molecular dynamics simulations of three BH3 peptides derived from the pro-apoptotic proteins Bak, Bid, and Bmf were carried out each for a period of at least 100 ns after 2 ns equilibration run. The length of simulated BH3 peptides varied from 22 to 24 residues and their binding affinities for Bfl-1/A1 varied from 1 to 180 nM. Our results show that the hydrophobic residues from the hydrophobic face of BH3 peptides tend to cluster together quickly to avoid being exposed to the solvent. This resulted in either reduction of helix length or complete loss of helical character. Bak and Bid BH3 peptides with high affinities for Bf1-1/A1 have stable helical segments in the N-terminal region. The highly conserved Leu residue lies just outside the helical region at the C-terminal end. Capping interactions arising out of N-cap residues seem to be extremely important to maintain the helical stability. Favorable hydrophilic interactions between residues also give further stability to the helix fragment and at least one of the interacting residues resides within the helical region. Bmf BH3 peptide with a weaker binding affinity for Bmf-1/A1 completely lost its helical character at the end of 100 ns production run and a further 50 ns simulation showed that the Bmf peptide continues to remain in random conformation. The present study clearly establishes a link between a BH3 peptide’s ability to form a stable helical segment and its high binding affinity for an anti-apoptotic protein. To further test this hypothesis, we simulated a mutant Bmf peptide for 100 ns in which two residues R129 and H146 were substituted by Asn in silico in the wild-type peptide. Introduction of N-terminal Asn clearly enabled the formation of capping interactions at the N-terminus and resulted in a stable N-terminal helical segment. This demonstrates that the knowledge of interactions that help to maintain stable helical segments in a high-affinity BH3 peptide will help in designing highly specific peptide-based drugs/inhibitors. Such molecules will have the ability to bind a particular anti-apoptotic protein with high affinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call