Abstract

HCO3-/CO2 can affect proximal tubule energy metabolism directly by serving as a substrate for metabolic reactions and indirectly through ATP utilization by HCO3(-)-coupled Na+ reabsorption and proton secretion. In this study, metabolic and transport roles of HCO3-/CO2 were examined by measuring the effects of HCO3-/CO2 removal and transport inhibitors on oxygen consumption (QO2) in suspensions of rabbit proximal tubules. Removal of medium HCO3-/CO2 inhibited ouabain-sensitive, ouabain-insensitive, and uncoupled QO2. Consistent with metabolic inhibition, the absence of HCO3-/CO2 also reduced tubule ATP content and stimulated lactate production. Analysis of the dependence of mitochondrial state 3 respiration on HCO3-/CO2 in digitonin-permeabilized tubules traced the metabolic inhibition to limitations in tricarboxylic acid cycle intermediate supply. Energy requirements for HCO3- transport were examined by measuring QO2 in response to acetazolamide, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), and the H(+)-adenosinetriphosphatase (H(+)-ATPase) inhibitor bafilomycin A. Acetazolamide had no effect on QO2, whereas DIDS-SITS and bafilomycin A reduced ouabain-insensitive QO2, consistent with inhibition of active proton secretion. DIDS-SITS did not affect ouabain-sensitive respiration, suggesting that HCO3(-)-dependent Na+ reabsorption may not be mediated through the Na(+)-K(+)-ATPase in this preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.