Abstract
We consider the vectorial extension of the recently developed matrix theory for the correlation between intensity fluctuations (CIF) of the scattered field generated by a collection of particles of $\mathcal {L}$ types [Y. Ding and D. M. Zhao, Opt. Express 30 46460, 2022]. In the spherical polar coordinate system, we establish a closed-form relation that connects the normalized CIF of the electromagnetic scattered field with the pair-potential matrix (PPM), the pair-structure matrix (PSM), and the spectral degree of polarization $\mathcal {P}$ of the incident field. Based on this, we pay much attention to the dependence of the normalized CIF of the scattered field on $\mathcal {P}$. It is found that the normalized CIF can be monotonically increasing or be nonmonotonic with $\mathcal {P}$ in the region [0, 1], determined by the polar angle θ and the azimuthal angle ϕ. Also, the distributions of the normalized CIF with $\mathcal {P}$ at polar angles and azimuthal angles are greatly different. These findings are explained mathematically as well as physically, and may be of interest to some related fields, especially where the CIF of the electromagnetic scattered field plays important roles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.