Abstract

BackgroundHepatitis B virus (HBV) infection is associated with a reduced risk of developing dyslipidemia and non-alcoholic fatty liver diseases. Given that the gut microbiota plays a significant role in cholesterol metabolism, we compared the differences in gut microbial diversity and composition between HBV-infected and uninfected subjects.ResultsA prospective case–control study was designed comprising healthy controls (group A) and HBV-infected individuals (group B) in a 1:1 ratio (57 participants each; total = 114). The patients in group B were divided into two subgroups according to their HBV DNA loads: B1 < 2000 IU/mL (N = 40) and B2 ≥ 2000 IU/mL (N = 17). In a pairwise comparison of HBV-infected individuals and controls, higher alpha diversity was noted in group B, and the difference was significant only in patients in group B1. Alloprevotella and Eubacterium coprostanoligenes were predominant in group B1 compared to the control, whereas the abundance of Bacteroides fragilis and Prevotella 2 was lower.ConclusionsThe gut microbiome in HBV-infected individuals with a low viral load is highly diverse and is dominated by specific taxa involved in fatty acid and lipid metabolism. To our knowledge, this is the first demonstration of a correlation between the presence of certain bacterial taxa and chronic HBV infection depending on the load of HBV DNA.

Highlights

  • Hepatitis B virus (HBV) infection is associated with a reduced risk of developing dyslipidemia and non-alcoholic fatty liver diseases

  • We excluded 20 patients from the initial group of participants; 14 of these had not sent in their stool samples; three had incomplete information on HBV DNA, hepatitis B e antigen (HBeAg), or hepatitis B e antibody (HBeAb); and three showed seroclearance of hepatitis B surface antigen (HBsAg) (Fig. 1)

  • This study demonstrated a correlation between the presence of certain bacterial taxa and chronic HBV infection according to the load of HBV DNA

Read more

Summary

Introduction

Hepatitis B virus (HBV) infection is associated with a reduced risk of developing dyslipidemia and non-alcoholic fatty liver diseases. Given that the gut microbiota plays a significant role in cholesterol metabolism, we compared the differences in gut microbial diversity and composition between HBV-infected and uninfected subjects. The gut microbiome, when considered a metabolic organ, has several roles in digestion, vitamin synthesis, immunomodulation, cardiovascular conditions, and the brain–gut axis. Given the significant role of the gut microbiota in cholesterol metabolism, it is possible that the effects of the altered gut microbiome in chronic HBV infection involve the regulation of microbe–host interactions at the gut interface. To evaluate the effect of the gut microbiome in chronic HBV infection on host metabolic health, we compared the differences in gut microbial diversity and composition between two groups of subjects: HBVinfected and uninfected subjects. A high viral load was defined as HBV DNA level ≥ 2000 IU/mL and a low viral load was defined as HBV DNA < 2000 IU/mL [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call