Abstract

Slips and falls are common occupational incidents worldwide. The friction on a floor surface is one of the critical environmental factors affecting the risk of a slip. In this research, we conducted friction measurements on stone and ceramic floor tiles under dry, wet, and water–detergent (WD) solution covered conditions using a horizontal pull slip meter (HPS). Our purposes were to quantify the slip resistance of commonly used stone and ceramic floors under different surface conditions and to validate the curvilinear relationship between the coefficient of friction (COF) and surface roughness of the floors proposed in the literature. The COF data were analyzed together with a surface profile parameter (Ra) of the floor samples. The results showed that the COFs of the stone floors were significantly (p < 0.0001) higher than those of the ceramic floors. All the floors under the dry conditions were slip resistant when adopting the ANSI 1264.2 criterion. Two and five ceramic floors were not slip resistant under the wet and WD solution covered conditions, respectively. Three polynomial regression equations were established to describe the relationship between the COF and Ra. The curvilinear functions of these models indicate that the three-zone (initial growth, steady-growth, and plateau) concept concerning the COF–Ra relationship in the literature was valid when static COF values measured using an HPS were adopted. In addition, the three-zone concept was valid not only on WD solution covered surfaces but also on dry and wet surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.