Abstract

Sprinting is a type of running that consists of producing a short and intense effort in order to performmaximal speed in a short period of time. Sprinting is widely investigated because of the multiple and complex mechanismsinvolved. Sprint studies are now focusing on how to improve performance by focusing their analyses on the mechanicvariables. The hamstrings are part of the most important muscle groups duringsprinting because of their role of stabilization and propulsion, but they must be able to produce the maximum strength during a short moment, this ability is characterized by rate of torque development (RTD). The main of this study was to investigate the association between hamstring RTD (Nm.s-1.kg-1) and mechanicalvariables composed of maximal power output (Pmax) (W.kg-1), maximal theoretical velocity (V0) (m.s-1), and maximal horizontal force production (F0) (N.kg-1) on short sprints in elite sprinters. For this clinical trial, we used a research method based on data collection. A single group composed of four male and one female elite sprinters (age: 17.2 ± 1.79 years) has been included in this study. The sprinters performed a hamstring strength test, which included five trials of four seconds for each leg. This test required a portable dynamometer, the Kforce®, to collect 100 and 200 milliseconds RTD. Then the subjects were submitted to a sprint test. My Sprint® application has been used to collect the sprint mechanicalvariables. The sprint test included two trials; a starting block has been used for this test. A linear regression analysis was used between the rates of torque development and mechanicalvariables composed of maximal power output (Pmax) (W.kg-1), maximal theoretical velocity (V0) (m. s-1), and maximal horizontal force production (F0) (N.kg-1). No significant correlation was observed between 100 and 200 ms hamstring RTDand sprint biomechanical variables: maximal power output(Pmax) (W.kg-1), maximal theoretical velocity (V0) (m. s-1), and horizontal force production (F0) (N.kg-1). However, 100 and 200 ms RTD collected on the dominant leg tends to be more correlated with maximal theoretical velocity (spearman's rho = 0.80; p-value = 0.13) and Pmax output (spearman's rho = 0.70; p-value = 0.23) while for non-dominant leg, RTD tends to be more correlated with maximal power output (spearman's rho = 0.60; p-value = 0.35) and horizontal force production (spearman's rho = 0.70; p-value = 0.23). Hamstring RTD is not correlated with sprint biomechanical variables in elite sprinters. Further investigations must be made to study the observed trends in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.