Abstract

An investigation on ductile crack initiation in structural steel has been made, based on the concept of Gurson's yield function for porous material. First, the condition of ductile crack initiation in the uniform stress field has been investigated. The condition of ductile crack initiation under various stress triaxiality obtained from the tests on axisymmetric notched tensile specimens is well expressed by the condition of constant void volume fraction analytically obtained from Gurson's model. This result means that the condition of constant void volume fraction may be used as the criterion of ductile crack initiation. Secondly, the behavior of void growth and ductile crack initiation in the area near the notch tip under mode I and mode II loading has been investigated. Under mode I loading, the increase in void volume fraction around the notch with an increase in applied load agrees well with the behavior of porous material predicted by the finite element analysis based on Gurson's yield function, and the ductile crack initiation can be predicted by the concept of critical void volume fraction as in the case of uniform stress-strain field given above. The same criterion is not applicable to the crack initiation under mode II loading and further study is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call