Abstract

The effect of incorporated aerosols on droplet pH was investigated by dissolution experiments on various particle types. These experiments conducted in an open-flow system show that the pH changes induced by aerosol solubilisation last up to 30 min, in the range of a typical droplet lifetime. These pH changes depend upon the initial pH of the experiment, i.e., the pH at cloud condensation. In the pH range between 3 and 5, the pH varies the most when it is high, since the base agents leached from the particles are neutralised by the protons present in the aqueous phase. A relationship between the neutralising capacity of the aerosol (NCA), i.e., the amount of uncompensated base species, and the pH after neutralisation has been found. Other experiments show that the NCA is related to the aerosol composition: silicates present more or less pronounced NCA, whereas C graphite presents a negative NCA, i.e., an acidifying capacity. The aerosol composition can be modified during cloud evapocondensation, notably by the addition of sulphate or sulphuric acid to the aerosol surface. NCA modification with cloud processing is observed when the amount of dissolved acid is larger than the neutralising capacity of the aerosol, i.e., when the droplet pH is less than a compensation pH characteristic of the aerosol type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call