Abstract

Nuclear DNA content of male and female gametes of tobacco was determined using 4′,6-diamindino-2-phenylindole and quantitative microfluorimetry. Pollen grains are released with generative cells containing 2C DNA. Mitotic division occurs in the pollen tube 8–12 h after germination. The resulting sperm cells have 1C DNA content during pollen tube elongation in the style. Sperm cells deposited in the degenerated synergid have a DNA content between 1C and 2C, indicating that sperm are in S-phase in the synergid. Concomitant with pollen tube arrival, the egg cell increases in DNA quantity from 1C to between 1C and 2C at 48 h after pollination. In the absence of pollination, S-phase in the egg cell is delayed by up to 36 h. Newly formed zygotes contain nuclear DNA concentrations of 4C at karyogamy and remain at 4C until zygote division. Tobacco displays cell fusion after the completion of S-phase, apparently during G2. Failure to achieve an optimized system for in vitro fertilization in Nicotiana may reflect the challenges of achieving cell cycle synchrony in gametes isolated from pollen tubes. Receptive gametes are presumably those that pass through the protracted S-phase, reaching G2 receptivity and cell cycle congruity before fusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.