Abstract

IntroductionStress hyperglycemia is a frequent finding in patients with COVID-19 infection and could affect the outcome of disease. Cytokines released in response to infection could have adverse effects on insulin sensitivity and pancreatic beta-cell function. The aim of the study was to examine the relationships of stress hyperglycemia with cytokines and clinical outcomes in hospitalized patients with COVID-19.MethodsIn a cross-sectional analysis of 150 patients hospitalized for COVID-19 infection who were included in the GIRA-COVID database, we identified patients with stress hyperglycemia by calculation of the Stress Hyperglycemia Ratio (SHR) and use of a cut-off of 1.14. Plasma levels of cytokines principally involved in COVID-19 infection-related cytokine storm were measured. Outcome variables were use of mechanical ventilation and death within 60 days from hospital admission.ResultsPatients with SHR > 1.14 had significantly higher plasma insulin, HOMA-index, and levels of interleukin-10 (IL-10), interleukin-10/tumor necrosis factor-a ratio (IL-10/TNF-α), and CXC motif chemokine ligand 10 (CXCL10) than patients with SHR ≤ 1.14. IL-10, IL-10/TNF-α ratio, CXCL10, and IFN-γ were significantly and directly related with SHR in univariate analysis and multivariate logistic regression models showed that IL-10, IL-10/TNF-α ratio, and CXCL10 were independently associated with SHR>1.14. In a multivariate logistic model, stress hyperglycemia predicted use of mechanical ventilation (OR 2.453; CI 1.078–6.012) and death (OR 2.281; CI 1.049–7.369) independently of diabetes and other major confounders.ConclusionsIn patients hospitalized for COVID-19 infection, stress hyperglycemia is associated with worse clinical outcomes and is independently related to levels of cytokines that might impair glucose homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.