Abstract
Because superconductivity and several relevant phenomena of high-temperature superconductors (HTSCs) arise from interactions of valence electrons near the Fermi surface, the valence orbital coupling has usually been thought to be critical to understanding the electronic pairing mechanism which seems work without the core coupling orbitals. But, as strong electronic correlations are believed to be essential for a comprehensive understanding of the cuprate superconductors, the Fermi surface is influenced directly or indirectly by all orbital couplings in the entire energy band. In this paper, we focused on the core orbital coupling which arises from the overlap between the Oxygen's 2s core orbital and the core p orbital of neighboring ion of CuO2 layers as they have a similar energy level ranging from –12 ∼ –23eV below the Fermi level. The characters of this core coupling are varied with different kinds of neighboring ions or from the crystal structures. Based on the experimental superconducting critical temperature (Tc) data, we found that the binding energy differences between the valence couplings and the core couplings are positively related with the systemic Tc values for all cuprate superconductors. Obviously, this relationship suggests that the electron pairing nature of superconductivity for all cuprates might arise from the sp core orbital coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.