Abstract

BackgroundSchizophrenia is thought to be a disorder of brain dysconnectivity. An imbalance between cortical excitation/inhibition is also implicated, but the link between these abnormalities remains unclear. The present study used magnetic resonance spectroscopy and functional magnetic resonance imaging at 7T to investigate how measurements of glutamate and gamma-aminobutyric acid (GABA) relate to the blood oxygen level–dependent (BOLD) response during a cognitive task, and how these relationships are altered in schizophrenia. MethodsUsable functional magnetic resonance imaging data from 17 first-episode psychosis (FEP) patients (4 women, 13 men) and 21 matched healthy control subjects (HCs) (5 women, 16 men) were acquired during a Stroop task. Within- and between-group comparisons of the BOLD response were performed. Neurometabolite levels were measured in the dorsal anterior cingulate cortex. Two multiple regressions investigated how glutamate, glutamine, and GABA related to the BOLD response in HCs and FEP patients separately. A third investigated between-group differences in the relationships between the BOLD response and each of these neurometabolites. ResultsCompared with HCs, FEP patients showed an increased BOLD response within regions of the executive and default mode networks. In FEP patients, the relationship between anterior cingulate cortex glutamate levels and the BOLD response in regions of the posterior default mode network was opposite to that of HCs. In FEP patients but not HCs, anterior cingulate cortex GABA levels correlated with the local BOLD response and with the Stroop reaction time. ConclusionThese results suggest a mechanism whereby alterations in the relationship between cortical glutamate/GABA and BOLD response is disrupting the dynamic of major neural networks, possibly affecting cognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.