Abstract

The relationship between the local backbone conformation and bond angles at Cα of symmetrically substituted Cα,α-dialkylated glycines (Cα,α-dimethylglycine or α-aminoisobutyric acid, Aib; Cα,α-diethylglycine, Deg; Cα,α-di-n-propylglycine, Dpg) has been investigated by molecular dynamics (MD) simulation adopting flat bottom harmonic potentials, instead of the usual harmonic restraints, for the Cα bond angles. The MD simulations show that the Cα bond angles are related to the local backbone conformation, irrespectively of the side-chain length of Aib, Deg, and Dpg residues. Moreover, the N-Cα-C′ (τ) angle is the most sensitive conformational parameter and, in the folded form, is always larger and more flexible than in the extended one. © 1998 John Wiley & Sons, Inc. Biopoly 46: 239–244, 1998

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call