Abstract
Colour-flow Doppler sonography has been described as a means of assessing corpus luteum (CL) function rapidly, because area of luteal blood vessels correlates well with circulating progesterone (P4) concentrations [P4] in oestrous cycling mares. The aim of this study was to assess the relationships between CL size and vascularity, and circulating [P4] during early pregnancy in mares, and to determine whether luteal blood flow was a useful aid for selecting an embryo transfer recipient. Equine embryos (n=48) were recovered 8 days after ovulation and were transferred to available recipient mares as part of a commercial program with the degree of synchrony in timing of recipient ovulation ranging from 1 day before to 4 days after the donor. Immediately prior to embryo transfer (ET), maximum CL cross-section and blood vessel areas were assessed sonographically, and jugular blood was collected to measure plasma [P4]. Sonographic measurements and jugular blood collection were repeated at day 4 after ET for all mares, and again at days 11, 18 and 25 after ET in mares that were pregnant. The number of grey-scale and colour pixels within the CL was subsequently quantified using ImageJ software. The CL blood flow correlated significantly but weakly with plasma [P4] on the day of transfer and on day 4 after ET in all mares, and on days 11 and 25 after ET in pregnant mares (r=0.30–0.36). The CL area and plasma [P4] were also correlated on each day until day 11 after ET (r=0.49–0.60). The CL colour pixel area decreased significantly after day 18, whereas CL area was already decreasing by day 4 after ET. The CL area, area of blood flow, or [P4] was predictive of pregnancy. Findings in the present study suggest that both CL area and blood flow are correlated with circulating [P4] at the time of transfer and in early pregnancy. Evaluation of the CL using B-mode or CF sonography, although practical, provides no improvement in the selection of recipients or prediction of pregnancy outcomes than methods employed currently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.