Abstract

Fixed abrasive polishing technology can obtain a nanoscale surface and is one of the future nano machining directions. The coefficient of friction between the pad and the wafer in the polishing process can influence on the surface quality of the wafer. The relationship between the coefficient of friction and surface roughness of the wafer was investigated to improve the efficiency and surface quality. Based on the Florida model, the adhesion, asperity plough and abrasive plough from the pad in the polishing process was analyzed. The friction force per unit area was calculated by the properties of the pad and wafer. Based on the rod model, the actual contact area was calculated by the surface roughness and the properties of the pad and wafer. The relational model between the surface roughness of the wafer and the friction coefficient was established. The model was verified by the experiments of fixed abrasive polishing of BK7 glass. When the friction coefficient is less than 1.9, the data of the experiment and theory match very well in the comparison process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.