Abstract
Abstract The Red Lake greenstone belt is one of the foremost Au mining camps in Canada and hosts the world-class Campbell-Red Lake Au deposit. Belt-scale hydrothermal alteration is characterized by proximal ferroan dolomite zones associated with Au mineralization surrounded by distal calcite zones, both being accompanied by potassic alterations (sericite, muscovite, and biotite). At the Campbell-Red Lake and Cochenour deposits Au mineralization (in particular high-grade ore) is associated with silica and sulfides (especially arsenopyrite) that replace carbonate ± quartz veins and the host rocks. The prevalence of carbonic fluid inclusions and rare occurrence of aqueous-bearing inclusions in carbonate–quartz–Au veins in the Campbell-Red Lake deposit, and the consistency of homogenization temperatures of carbonic inclusions within individual fluid inclusion assemblages (FIA), have been interpreted to indicate that H2O-poor, CO2-dominated fluids were responsible for the carbonate veining and Au mineralization. Further studies of fluid inclusions in carbonate–quartz veins within and outside the deformation zone hosting the Campbell-Red Lake deposit (the Red Lake Mine trend) including the Cochenour Au deposit, the Redcon Au prospect, and outcrops in the distal calcite zone also reveal the dominance of carbonic fluid inclusions in vein minerals. These studies indicate that CO2-dominated fluids were flowing through fractures during carbonate vein formation and Au mineralization both within and outside major structures. The carbonic fluid may have been initially undersaturated with water, or it may have resulted from phase separation of an H2O–CO2–NaCl fluid. In the latter case, phase separation modeling indicates that the initial fluid likely had X CO 2 values larger than 0.8. Calculations based on hydrothermal mineral assemblages indicate X CO 2 values in the host rocks from 0.025 to 0.85, reflecting a change from CO2-dominated fluids in the fractures (veins) to H2O-dominated fluids in the host rocks away from the fractures. The CO2-dominated fluids were likely advected from granulite facies in the deeper crust, whereas the H2O-dominated fluids were derived from the ambient host rocks of amphibole to greenschist facies. Calculations based on CO2 requirements and source constraints indicate that the mineralizing fluids were likely two orders of magnitude more enriched in Au than the commonly assumed values of a few μg/L, which may explain why the Campbell-Red Lake deposit has a very high-grade of Au (average 21 g/t for the whole deposit and 81 g/t for the Goldcorp High-Grade zone). Fluid inclusion data suggest that the carbonate veining and Au mineralization likely took place at depths from 7 to 14 km. The development of crustiform–colloform structures in the carbonate ± quartz veins, which was previously interpreted to indicate relatively shallow environments, may alternatively have been related to extremely high fluid pressures and the CO2-dominated nature of the fluids, which could have enhanced the brittle properties of the rocks due to their high wetting angles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.