Abstract

Temporal variations of the ambient mixing ratio of greenhouse gas (CH(4) and N(2)O) in a riparian rice-based agro-ecosystem of tropical region were studied during 2005-2006 in coastal Odisha. The endeavour was made with the hypothesis that the ambient mixing ratio of CH(4) and N(2)O depends on the changes in the flux of CH(4) and N(2)O from the rice fields in the riparian rice ecosystems. A higher ambient mixing ratio of CH(4) was recorded during the tillering to grain filling stages of the rice crop, during both dry and wet seasons. The higher ambient mixing ratio of CH(4) during the wet season may attribute to the higher CH(4) emission from the rice field. The average mixing ratio of CH(4) was recorded as 1.84 ± 0.05 ppmv and 1.85 ± 0.06 ppmv during 2005 and 2006, respectively. The ambient CH(4) mixing ratio was recorded negatively correlated with the average ambient temperature. The N(2)O mixing ratio ranged from 261.57 to 399.44 ppbv with an average of 330.57 ppbv during 2005. However, the average mixing ratio of N(2)O was recorded as 318.83 ± 20.00 ppbv during 2006. The N(2)O mixing ratio was recorded to be negatively correlated with rainfall and average ambient temperature. Significant negative correlation (r = -0.209) of N(2)O with sunshine hours may attribute to the photochemical break down of N(2)O. The temporal variation of N(2)O flux from the rice field does not affect the ambient mixing ratio of N(2)O in the same way as in the case of the ambient mixing ratio of CH(4). However, the higher mixing ratio of N(2)O during the fallow period of the post monsoon period may attribute to the N(2)O flux from soil. Results indicate that intensively cultivated coastal ecosystems can be a major source of ambient greenhouse gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.