Abstract

Objective The aim of this study was to assess the relationship between left ventricular (LV) deformational abnormalities, measured by two-dimensional strain imaging, and T-wave alternans (TWA) in hypertrophic cardiomyopathy (HCM). Background HCM is a prevalent hereditary cardiac disorder linked to arrhythmia and sudden cardiac death. Microvolt TWA involves periodic beat-to-beat variation in the amplitude or the shape of the T wave in an ECG. In HCM, TWA has been linked to increased LV mass and used previously as noninvasive prognostic tools in the evaluation and patient risk stratification. Patients and methods The study group consisted of 40 consecutive HCM patients. The HCM group was compared with 33 age-matched and sex-matched healthy participants. All patients and control participants underwent 12-lead ECG, conventional echocardiographic examination, two-dimensional strain imaging, treadmill exercise test, and measurement of TWA, 24-h Holter monitoring. Results Depending on TWA results, the patients were divided into two groups: TWA+ patients, and TWA- patients. There were no significant differences among the most conventional echocardiographic measures between TWA groups. Absolute values of esys, SRsys, SRe, and SRa were significantly smaller in HCM patients than the controls at rest and peak exercise (P Conclusion The considerable association of myocardial dysfunction with TWA+ outcome provides important new evidence on arrhythmia vulnerability in HCM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.