Abstract

Reducing emission from deforestation and forest degradation (REDD+) programme has prime concern to carbon stock enhancement rather than biodiversity conservation. Participatory managed forest has been preparing to get benefit under this programme, and collaborative forest is one of them in Nepal. Hence, this research is intended to assess the relationship between carbon stock and biodiversity. Three collaborative forests (CFMs) were selected as study sites in Mahottari district, Nepal. Altogether 96 sample plots were established applying stratified random sampling. The plot size for tree was 20 m × 25 m. Similarly, other concentric plots were established. Diameter at breast height (DBH) and height were measured, species were counted, and soil samples were collected from 0–0.1, 0.1–0.3, and 0.3–0.6 m depths. The biomass was calculated using equation of Chave et al. and converted into carbon, soil carbon was analyzed in laboratory, and plant biodiversity was calculated. Then, relation between carbon stock and biodiversity was developed. Estimated carbon stocks were 197.10, 222.58, and 274.66 ton ha−1 in Banke-Maraha, Tuteshwarnath, and Gadhanta-Bardibas CFMs, respectively. The values of Shannon-Wiener Biodiversity Index ranged 2.21–2.33. Any significant relationship between carbon stock and biodiversity, and was not found hence REDD+ programme should emphasize on biodiversity conservation.

Highlights

  • Halting deforestation single can contribute to reduce about 18% atmospheric CO2 emission [1]

  • Total carbon stock in collaborative forests varied from site to site

  • It was found that the highest quantity of carbon stock was 274.66 t ha−1 in Gadhanta-Bardibas CFM while it was lowest about 197.10 t ha−1 in Banke-Maraha CFM (Table 1)

Read more

Summary

Introduction

Halting deforestation single can contribute to reduce about 18% atmospheric CO2 emission [1]. The forest management has objectively been focused on altering the deforestation and forest degradation targeting to get the benefit from reducing emission from deforestation and forest degradation (REDD+) programme in response to climate change [2]. Community managed forests have been preparing to be candidate under this [3]. Deforestation contributes about 5.9 GtCO2 annually in the world [4]. The current rate of deforestation, clearing tropical forests could release an additional 87 to 130 GtC of CO2 to the atmosphere by 2100 [5]. In the base year 1994/1995, net emissions of CO2 from all sectors in Nepal were estimated to be 9747 Gg and from the land-use change and forestry sectors were about 8117 Gg [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call